A Kinetic Model for the Approximately Isentropic Solutions of the Euler Equations
نویسنده
چکیده
The purpose of the paper is an investigation of compactness properties of a family of solutions of a BGK-type model for near equilibrium kinetic densities for the system of the Euler equations for isentropic flows. 0.
منابع مشابه
Admissibility of weak solutions for the compressible Euler equations, n ≥ 2.
This paper compares three popular notions of admissibility for weak solutions of the compressible isentropic Euler equations of gas dynamics: (i) the viscosity criterion, (ii) the entropy inequality (the thermodynamically admissible isentropic solutions), and (iii) the viscosity-capillarity criterion. An exact summation of the Chapman-Enskog expansion for Grad's moment system suggests that it i...
متن کاملGlobal existence and asymptotic behavior of the solutions to the 3D bipolar non-isentropic Euler–Poisson equation∗
Abstract. In this paper, the global existence of smooth solutions for the three-dimensional (3D) non-isentropic bipolar hydrodynamic model is showed when the initial data are close to a constant state. This system takes the form of non-isentropic Euler–Poisson with electric field and frictional damping added to the momentum equations. Moreover, the L-decay rate of the solutions is also obtained...
متن کاملOn Isentropic Approximations for Compressible Euler Equations
In this paper, we first generalize the classical results on Cauchy problem for positive symmetric quasilinear systems to more general Besov space. Through this generalization, we obtain the local well-posedness with initial data in the space B d 2 +1 2,1 (R ) which has critical regularity index. We then apply these results to give an explicit characterization on the Isentropic approximation for...
متن کاملVanishing Viscosity Limit of the Navier-Stokes Equations to the Euler Equations for Compressible Fluid Flow
We establish the vanishing viscosity limit of the Navier-Stokes equations to the isentropic Euler equations for one-dimensional compressible fluid flow. For the NavierStokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup-norm of solutions with respect to the physical viscosity coefficient may not be directly co...
متن کاملFormation of δ-Shocks and Vacuum States in the Vanishing Pressure Limit of Solutions to the Euler Equations for Isentropic Fluids
The phenomena of concentration and cavitation and the formation of δ-shocks and vacuum states in solutions to the Euler equations for isentropic fluids are identified and analyzed as the pressure vanishes. It is shown that, as the pressure vanishes, any two-shock Riemann solution to the Euler equations for isentropic fluids tends to a δ-shock solution to the Euler equations for pressureless flu...
متن کامل